'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(f(x)) -> mark(f(f(x)))
     , chk(no(f(x))) ->
       f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
     , mat(f(x), f(y())) -> f(mat(x, y()))
     , chk(no(c())) -> active(c())
     , mat(f(x), c()) -> no(c())
     , f(active(x)) -> active(f(x))
     , f(no(x)) -> no(f(x))
     , f(mark(x)) -> mark(f(x))
     , tp(mark(x)) ->
       tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(f(x)) -> c_0(f^#(f(x)))
    , chk^#(no(f(x))) ->
      c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
    , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))
    , chk^#(no(c())) -> c_3(active^#(c()))
    , mat^#(f(x), c()) -> c_4()
    , f^#(active(x)) -> c_5(active^#(f(x)))
    , f^#(no(x)) -> c_6(f^#(x))
    , f^#(mark(x)) -> c_7(f^#(x))
    , tp^#(mark(x)) ->
      c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
  
  The usable rules are:
   {  chk(no(f(x))) ->
      f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
    , mat(f(x), f(y())) -> f(mat(x, y()))
    , chk(no(c())) -> active(c())
    , mat(f(x), c()) -> no(c())
    , f(active(x)) -> active(f(x))
    , f(no(x)) -> no(f(x))
    , f(mark(x)) -> mark(f(x))
    , active(f(x)) -> mark(f(f(x)))}
  
  The estimated dependency graph contains the following edges:
   {active^#(f(x)) -> c_0(f^#(f(x)))}
     ==> {f^#(mark(x)) -> c_7(f^#(x))}
   {active^#(f(x)) -> c_0(f^#(f(x)))}
     ==> {f^#(no(x)) -> c_6(f^#(x))}
   {active^#(f(x)) -> c_0(f^#(f(x)))}
     ==> {f^#(active(x)) -> c_5(active^#(f(x)))}
   {chk^#(no(f(x))) ->
    c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
     ==> {f^#(mark(x)) -> c_7(f^#(x))}
   {chk^#(no(f(x))) ->
    c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
     ==> {f^#(no(x)) -> c_6(f^#(x))}
   {chk^#(no(f(x))) ->
    c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
     ==> {f^#(active(x)) -> c_5(active^#(f(x)))}
   {f^#(active(x)) -> c_5(active^#(f(x)))}
     ==> {active^#(f(x)) -> c_0(f^#(f(x)))}
   {f^#(no(x)) -> c_6(f^#(x))}
     ==> {f^#(mark(x)) -> c_7(f^#(x))}
   {f^#(no(x)) -> c_6(f^#(x))}
     ==> {f^#(no(x)) -> c_6(f^#(x))}
   {f^#(no(x)) -> c_6(f^#(x))}
     ==> {f^#(active(x)) -> c_5(active^#(f(x)))}
   {f^#(mark(x)) -> c_7(f^#(x))}
     ==> {f^#(mark(x)) -> c_7(f^#(x))}
   {f^#(mark(x)) -> c_7(f^#(x))}
     ==> {f^#(no(x)) -> c_6(f^#(x))}
   {f^#(mark(x)) -> c_7(f^#(x))}
     ==> {f^#(active(x)) -> c_5(active^#(f(x)))}
   {tp^#(mark(x)) ->
    c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
     ==> {tp^#(mark(x)) ->
          c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
  
  We consider the following path(s):
   1) {  chk^#(no(f(x))) ->
         c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
       , active^#(f(x)) -> c_0(f^#(f(x)))
       , f^#(active(x)) -> c_5(active^#(f(x)))
       , f^#(mark(x)) -> c_7(f^#(x))
       , f^#(no(x)) -> c_6(f^#(x))}
      
      The usable rules for this path are the following:
      {  chk(no(f(x))) ->
         f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
       , mat(f(x), f(y())) -> f(mat(x, y()))
       , chk(no(c())) -> active(c())
       , mat(f(x), c()) -> no(c())
       , f(active(x)) -> active(f(x))
       , f(no(x)) -> no(f(x))
       , f(mark(x)) -> mark(f(x))
       , active(f(x)) -> mark(f(f(x)))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  chk(no(f(x))) ->
                 f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
               , mat(f(x), f(y())) -> f(mat(x, y()))
               , chk(no(c())) -> active(c())
               , mat(f(x), c()) -> no(c())
               , f(active(x)) -> active(f(x))
               , f(no(x)) -> no(f(x))
               , f(mark(x)) -> mark(f(x))
               , active(f(x)) -> mark(f(f(x)))
               , chk^#(no(f(x))) ->
                 c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
               , active^#(f(x)) -> c_0(f^#(f(x)))
               , f^#(active(x)) -> c_5(active^#(f(x)))
               , f^#(mark(x)) -> c_7(f^#(x))
               , f^#(no(x)) -> c_6(f^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(x)) -> c_7(f^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(x)) -> c_7(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [1]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(x)) -> mark(f(f(x)))}
            and weakly orienting the rules
            {f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(x)) -> mark(f(f(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [4]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(x)) -> c_0(f^#(f(x)))}
            and weakly orienting the rules
            {  active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(x)) -> c_0(f^#(f(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(active(x)) -> c_5(active^#(f(x)))}
            and weakly orienting the rules
            {  active^#(f(x)) -> c_0(f^#(f(x)))
             , active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(active(x)) -> c_5(active^#(f(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [7]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [7]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mat(f(x), c()) -> no(c())}
            and weakly orienting the rules
            {  f^#(active(x)) -> c_5(active^#(f(x)))
             , active^#(f(x)) -> c_0(f^#(f(x)))
             , active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat(f(x), c()) -> no(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [8]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [2]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [10]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {chk^#(no(f(x))) ->
             c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
            and weakly orienting the rules
            {  mat(f(x), c()) -> no(c())
             , f^#(active(x)) -> c_5(active^#(f(x)))
             , active^#(f(x)) -> c_0(f^#(f(x)))
             , active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [2]
                  c_7(x1) = [1] x1 + [1]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {chk(no(c())) -> active(c())}
            and weakly orienting the rules
            {  chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , mat(f(x), c()) -> no(c())
             , f^#(active(x)) -> c_5(active^#(f(x)))
             , active^#(f(x)) -> c_0(f^#(f(x)))
             , active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {chk(no(c())) -> active(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [2]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [1]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  chk^#(x1) = [1] x1 + [3]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(no(x)) -> c_6(f^#(x))}
            and weakly orienting the rules
            {  chk(no(c())) -> active(c())
             , chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , mat(f(x), c()) -> no(c())
             , f^#(active(x)) -> c_5(active^#(f(x)))
             , active^#(f(x)) -> c_0(f^#(f(x)))
             , active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(no(x)) -> c_6(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [12]
                  mat(x1, x2) = [1] x1 + [1] x2 + [12]
                  X() = [0]
                  y() = [0]
                  c() = [7]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  chk^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [6]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mat(f(x), f(y())) -> f(mat(x, y()))}
            and weakly orienting the rules
            {  f^#(no(x)) -> c_6(f^#(x))
             , chk(no(c())) -> active(c())
             , chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , mat(f(x), c()) -> no(c())
             , f^#(active(x)) -> c_5(active^#(f(x)))
             , active^#(f(x)) -> c_0(f^#(f(x)))
             , active(f(x)) -> mark(f(f(x)))
             , f^#(mark(x)) -> c_7(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat(f(x), f(y())) -> f(mat(x, y()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [4]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [7]
                  mat(x1, x2) = [1] x1 + [1] x2 + [6]
                  X() = [7]
                  y() = [5]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  chk(no(f(x))) ->
                   f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
                 , f(active(x)) -> active(f(x))
                 , f(no(x)) -> no(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  mat(f(x), f(y())) -> f(mat(x, y()))
                 , f^#(no(x)) -> c_6(f^#(x))
                 , chk(no(c())) -> active(c())
                 , chk^#(no(f(x))) ->
                   c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
                 , mat(f(x), c()) -> no(c())
                 , f^#(active(x)) -> c_5(active^#(f(x)))
                 , active^#(f(x)) -> c_0(f^#(f(x)))
                 , active(f(x)) -> mark(f(f(x)))
                 , f^#(mark(x)) -> c_7(f^#(x))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  chk(no(f(x))) ->
                     f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
                   , f(active(x)) -> active(f(x))
                   , f(no(x)) -> no(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  mat(f(x), f(y())) -> f(mat(x, y()))
                   , f^#(no(x)) -> c_6(f^#(x))
                   , chk(no(c())) -> active(c())
                   , chk^#(no(f(x))) ->
                     c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
                   , mat(f(x), c()) -> no(c())
                   , f^#(active(x)) -> c_5(active^#(f(x)))
                   , active^#(f(x)) -> c_0(f^#(f(x)))
                   , active(f(x)) -> mark(f(f(x)))
                   , f^#(mark(x)) -> c_7(f^#(x))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , no_0(2) -> 2
                 , X_0() -> 2
                 , y_0() -> 2
                 , c_0() -> 2
                 , active^#_0(2) -> 1
                 , f^#_0(2) -> 1
                 , chk^#_0(2) -> 1
                 , c_6_0(1) -> 1
                 , c_7_0(1) -> 1}
      
   2) {chk^#(no(f(x))) ->
       c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
      
      The usable rules for this path are the following:
      {  chk(no(f(x))) ->
         f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
       , mat(f(x), f(y())) -> f(mat(x, y()))
       , chk(no(c())) -> active(c())
       , mat(f(x), c()) -> no(c())
       , f(active(x)) -> active(f(x))
       , f(no(x)) -> no(f(x))
       , f(mark(x)) -> mark(f(x))
       , active(f(x)) -> mark(f(f(x)))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  chk(no(f(x))) ->
                 f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
               , mat(f(x), f(y())) -> f(mat(x, y()))
               , chk(no(c())) -> active(c())
               , mat(f(x), c()) -> no(c())
               , f(active(x)) -> active(f(x))
               , f(no(x)) -> no(f(x))
               , f(mark(x)) -> mark(f(x))
               , active(f(x)) -> mark(f(f(x)))
               , chk^#(no(f(x))) ->
                 c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active(f(x)) -> mark(f(f(x)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(x)) -> mark(f(f(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {chk^#(no(f(x))) ->
             c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
            and weakly orienting the rules
            {active(f(x)) -> mark(f(f(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {chk(no(f(x))) ->
             f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))}
            and weakly orienting the rules
            {  chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , active(f(x)) -> mark(f(f(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {chk(no(f(x))) ->
               f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [3]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [2]
                  chk(x1) = [1] x1 + [2]
                  no(x1) = [1] x1 + [1]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [6]
                  chk^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [1]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {chk(no(c())) -> active(c())}
            and weakly orienting the rules
            {  chk(no(f(x))) ->
               f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
             , chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , active(f(x)) -> mark(f(f(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {chk(no(c())) -> active(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [12]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [10]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [2]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mat(f(x), f(y())) -> f(mat(x, y()))}
            and weakly orienting the rules
            {  chk(no(c())) -> active(c())
             , chk(no(f(x))) ->
               f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
             , chk^#(no(f(x))) ->
               c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , active(f(x)) -> mark(f(f(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat(f(x), f(y())) -> f(mat(x, y()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [8]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [15]
                  mat(x1, x2) = [1] x1 + [1] x2 + [2]
                  X() = [0]
                  y() = [15]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  chk^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [2]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mat(f(x), c()) -> no(c())
                 , f(active(x)) -> active(f(x))
                 , f(no(x)) -> no(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  mat(f(x), f(y())) -> f(mat(x, y()))
                 , chk(no(c())) -> active(c())
                 , chk(no(f(x))) ->
                   f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
                 , chk^#(no(f(x))) ->
                   c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
                 , active(f(x)) -> mark(f(f(x)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mat(f(x), c()) -> no(c())
                   , f(active(x)) -> active(f(x))
                   , f(no(x)) -> no(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  mat(f(x), f(y())) -> f(mat(x, y()))
                   , chk(no(c())) -> active(c())
                   , chk(no(f(x))) ->
                     f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
                   , chk^#(no(f(x))) ->
                     c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
                   , active(f(x)) -> mark(f(f(x)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(7) -> 3
                 , mark_0(8) -> 3
                 , mark_0(9) -> 3
                 , no_0(3) -> 5
                 , no_0(5) -> 5
                 , no_0(7) -> 5
                 , no_0(8) -> 5
                 , no_0(9) -> 5
                 , X_0() -> 7
                 , y_0() -> 8
                 , c_0() -> 9
                 , f^#_0(3) -> 13
                 , f^#_0(5) -> 13
                 , f^#_0(7) -> 13
                 , f^#_0(8) -> 13
                 , f^#_0(9) -> 13
                 , chk^#_0(3) -> 14
                 , chk^#_0(5) -> 14
                 , chk^#_0(7) -> 14
                 , chk^#_0(8) -> 14
                 , chk^#_0(9) -> 14}
      
   3) {tp^#(mark(x)) ->
       c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
      
      The usable rules for this path are the following:
      {  chk(no(f(x))) ->
         f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
       , mat(f(x), f(y())) -> f(mat(x, y()))
       , chk(no(c())) -> active(c())
       , mat(f(x), c()) -> no(c())
       , f(active(x)) -> active(f(x))
       , f(no(x)) -> no(f(x))
       , f(mark(x)) -> mark(f(x))
       , active(f(x)) -> mark(f(f(x)))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  chk(no(f(x))) ->
                 f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
               , mat(f(x), f(y())) -> f(mat(x, y()))
               , chk(no(c())) -> active(c())
               , mat(f(x), c()) -> no(c())
               , f(active(x)) -> active(f(x))
               , f(no(x)) -> no(f(x))
               , f(mark(x)) -> mark(f(x))
               , active(f(x)) -> mark(f(f(x)))
               , tp^#(mark(x)) ->
                 c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mat(f(x), c()) -> no(c())
             , active(f(x)) -> mark(f(f(x)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mat(f(x), c()) -> no(c())
               , active(f(x)) -> mark(f(f(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [2]
                  X() = [0]
                  y() = [2]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [1] x1 + [15]
                  c_8(x1) = [1] x1 + [15]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {tp^#(mark(x)) ->
             c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
            and weakly orienting the rules
            {  mat(f(x), c()) -> no(c())
             , active(f(x)) -> mark(f(f(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {tp^#(mark(x)) ->
               c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  chk(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [1] x1 + [8]
                  c_8(x1) = [1] x1 + [6]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mat(f(x), f(y())) -> f(mat(x, y()))}
            and weakly orienting the rules
            {  tp^#(mark(x)) ->
               c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
             , mat(f(x), c()) -> no(c())
             , active(f(x)) -> mark(f(f(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat(f(x), f(y())) -> f(mat(x, y()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [12]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [11]
                  chk(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  y() = [6]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [1] x1 + [3]
                  c_8(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  chk(no(f(x))) ->
                   f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
                 , chk(no(c())) -> active(c())
                 , f(active(x)) -> active(f(x))
                 , f(no(x)) -> no(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  mat(f(x), f(y())) -> f(mat(x, y()))
                 , tp^#(mark(x)) ->
                   c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
                 , mat(f(x), c()) -> no(c())
                 , active(f(x)) -> mark(f(f(x)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  chk(no(f(x))) ->
                     f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))
                   , chk(no(c())) -> active(c())
                   , f(active(x)) -> active(f(x))
                   , f(no(x)) -> no(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  mat(f(x), f(y())) -> f(mat(x, y()))
                   , tp^#(mark(x)) ->
                     c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))
                   , mat(f(x), c()) -> no(c())
                   , active(f(x)) -> mark(f(f(x)))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  active_1(37) -> 25
                 , active_2(52) -> 39
                 , f_0(7) -> 36
                 , f_0(28) -> 27
                 , f_0(29) -> 28
                 , f_0(30) -> 29
                 , f_0(31) -> 30
                 , f_0(32) -> 31
                 , f_0(33) -> 32
                 , f_0(34) -> 33
                 , f_0(35) -> 34
                 , f_0(36) -> 35
                 , f_1(42) -> 41
                 , f_1(43) -> 42
                 , f_1(44) -> 43
                 , f_1(45) -> 44
                 , f_1(46) -> 45
                 , f_1(47) -> 46
                 , f_1(48) -> 47
                 , f_1(49) -> 48
                 , f_1(50) -> 49
                 , f_1(51) -> 50
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(7) -> 3
                 , mark_0(8) -> 3
                 , mark_0(9) -> 3
                 , chk_0(26) -> 25
                 , chk_1(40) -> 39
                 , no_0(3) -> 5
                 , no_0(5) -> 5
                 , no_0(7) -> 5
                 , no_0(8) -> 5
                 , no_0(9) -> 5
                 , no_0(9) -> 26
                 , no_1(37) -> 40
                 , mat_0(27, 3) -> 26
                 , mat_0(27, 5) -> 26
                 , mat_0(27, 7) -> 26
                 , mat_0(27, 8) -> 26
                 , mat_0(27, 9) -> 26
                 , mat_1(41, 3) -> 40
                 , mat_1(41, 5) -> 40
                 , mat_1(41, 7) -> 40
                 , mat_1(41, 8) -> 40
                 , mat_1(41, 9) -> 40
                 , X_0() -> 7
                 , X_1() -> 51
                 , y_0() -> 8
                 , c_0() -> 9
                 , c_1() -> 37
                 , c_2() -> 52
                 , tp^#_0(3) -> 23
                 , tp^#_0(5) -> 23
                 , tp^#_0(7) -> 23
                 , tp^#_0(8) -> 23
                 , tp^#_0(9) -> 23
                 , tp^#_0(25) -> 24
                 , tp^#_1(39) -> 38
                 , c_8_0(24) -> 23
                 , c_8_1(38) -> 23}
      
   4) {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
      
      The usable rules for this path are the following:
      {  mat(f(x), f(y())) -> f(mat(x, y()))
       , mat(f(x), c()) -> no(c())
       , f(active(x)) -> active(f(x))
       , f(no(x)) -> no(f(x))
       , f(mark(x)) -> mark(f(x))
       , active(f(x)) -> mark(f(f(x)))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mat(f(x), f(y())) -> f(mat(x, y()))
               , mat(f(x), c()) -> no(c())
               , f(active(x)) -> active(f(x))
               , f(no(x)) -> no(f(x))
               , f(mark(x)) -> mark(f(x))
               , active(f(x)) -> mark(f(f(x)))
               , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [1]
                  mat(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mat(f(x), c()) -> no(c())}
            and weakly orienting the rules
            {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat(f(x), c()) -> no(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [1]
                  mat(x1, x2) = [1] x1 + [1] x2 + [9]
                  X() = [0]
                  y() = [8]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [1] x1 + [1] x2 + [15]
                  c_2(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mat(f(x), f(y())) -> f(mat(x, y()))}
            and weakly orienting the rules
            {  mat(f(x), c()) -> no(c())
             , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat(f(x), f(y())) -> f(mat(x, y()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [12]
                  chk(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  y() = [8]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [1] x1 + [1] x2 + [11]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(x)) -> mark(f(f(x)))}
            and weakly orienting the rules
            {  mat(f(x), f(y())) -> f(mat(x, y()))
             , mat(f(x), c()) -> no(c())
             , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(x)) -> mark(f(f(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [2]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  chk(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [1] x1 + [1] x2 + [4]
                  X() = [0]
                  y() = [0]
                  c() = [12]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [1] x1 + [1] x2 + [5]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(active(x)) -> active(f(x))
                 , f(no(x)) -> no(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  active(f(x)) -> mark(f(f(x)))
                 , mat(f(x), f(y())) -> f(mat(x, y()))
                 , mat(f(x), c()) -> no(c())
                 , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(active(x)) -> active(f(x))
                   , f(no(x)) -> no(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  active(f(x)) -> mark(f(f(x)))
                   , mat(f(x), f(y())) -> f(mat(x, y()))
                   , mat(f(x), c()) -> no(c())
                   , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , mark_0(9) -> 3
                 , no_0(3) -> 5
                 , no_0(5) -> 5
                 , no_0(8) -> 5
                 , no_0(9) -> 5
                 , y_0() -> 8
                 , c_0() -> 9
                 , f^#_0(3) -> 13
                 , f^#_0(5) -> 13
                 , f^#_0(8) -> 13
                 , f^#_0(9) -> 13
                 , mat^#_0(3, 3) -> 16
                 , mat^#_0(3, 5) -> 16
                 , mat^#_0(3, 8) -> 16
                 , mat^#_0(3, 9) -> 16
                 , mat^#_0(5, 3) -> 16
                 , mat^#_0(5, 5) -> 16
                 , mat^#_0(5, 8) -> 16
                 , mat^#_0(5, 9) -> 16
                 , mat^#_0(8, 3) -> 16
                 , mat^#_0(8, 5) -> 16
                 , mat^#_0(8, 8) -> 16
                 , mat^#_0(8, 9) -> 16
                 , mat^#_0(9, 3) -> 16
                 , mat^#_0(9, 5) -> 16
                 , mat^#_0(9, 8) -> 16
                 , mat^#_0(9, 9) -> 16}
      
   5) {chk^#(no(c())) -> c_3(active^#(c()))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           chk(x1) = [0] x1 + [0]
           no(x1) = [0] x1 + [0]
           mat(x1, x2) = [0] x1 + [0] x2 + [0]
           X() = [0]
           y() = [0]
           c() = [0]
           tp(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           chk^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           tp^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {chk^#(no(c())) -> c_3(active^#(c()))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {chk^#(no(c())) -> c_3(active^#(c()))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {chk^#(no(c())) -> c_3(active^#(c()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  chk(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  mat(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  chk^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {chk^#(no(c())) -> c_3(active^#(c()))}
            
            Details:         
              The given problem does not contain any strict rules
      
   6) {mat^#(f(x), c()) -> c_4()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           chk(x1) = [0] x1 + [0]
           no(x1) = [0] x1 + [0]
           mat(x1, x2) = [0] x1 + [0] x2 + [0]
           X() = [0]
           y() = [0]
           c() = [0]
           tp(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           chk^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           mat^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           tp^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mat^#(f(x), c()) -> c_4()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mat^#(f(x), c()) -> c_4()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mat^#(f(x), c()) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  chk(x1) = [0] x1 + [0]
                  no(x1) = [0] x1 + [0]
                  mat(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  y() = [0]
                  c() = [0]
                  tp(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  chk^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  mat^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  tp^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {mat^#(f(x), c()) -> c_4()}
            
            Details:         
              The given problem does not contain any strict rules