'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(x)) -> mark(f(f(x))) , chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(f(x)) -> c_0(f^#(f(x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y()))) , chk^#(no(c())) -> c_3(active^#(c())) , mat^#(f(x), c()) -> c_4() , f^#(active(x)) -> c_5(active^#(f(x))) , f^#(no(x)) -> c_6(f^#(x)) , f^#(mark(x)) -> c_7(f^#(x)) , tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} The usable rules are: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x)))} The estimated dependency graph contains the following edges: {active^#(f(x)) -> c_0(f^#(f(x)))} ==> {f^#(mark(x)) -> c_7(f^#(x))} {active^#(f(x)) -> c_0(f^#(f(x)))} ==> {f^#(no(x)) -> c_6(f^#(x))} {active^#(f(x)) -> c_0(f^#(f(x)))} ==> {f^#(active(x)) -> c_5(active^#(f(x)))} {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} ==> {f^#(mark(x)) -> c_7(f^#(x))} {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} ==> {f^#(no(x)) -> c_6(f^#(x))} {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} ==> {f^#(active(x)) -> c_5(active^#(f(x)))} {f^#(active(x)) -> c_5(active^#(f(x)))} ==> {active^#(f(x)) -> c_0(f^#(f(x)))} {f^#(no(x)) -> c_6(f^#(x))} ==> {f^#(mark(x)) -> c_7(f^#(x))} {f^#(no(x)) -> c_6(f^#(x))} ==> {f^#(no(x)) -> c_6(f^#(x))} {f^#(no(x)) -> c_6(f^#(x))} ==> {f^#(active(x)) -> c_5(active^#(f(x)))} {f^#(mark(x)) -> c_7(f^#(x))} ==> {f^#(mark(x)) -> c_7(f^#(x))} {f^#(mark(x)) -> c_7(f^#(x))} ==> {f^#(no(x)) -> c_6(f^#(x))} {f^#(mark(x)) -> c_7(f^#(x))} ==> {f^#(active(x)) -> c_5(active^#(f(x)))} {tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} ==> {tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} We consider the following path(s): 1) { chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active^#(f(x)) -> c_0(f^#(f(x))) , f^#(active(x)) -> c_5(active^#(f(x))) , f^#(mark(x)) -> c_7(f^#(x)) , f^#(no(x)) -> c_6(f^#(x))} The usable rules for this path are the following: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x)))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active^#(f(x)) -> c_0(f^#(f(x))) , f^#(active(x)) -> c_5(active^#(f(x))) , f^#(mark(x)) -> c_7(f^#(x)) , f^#(no(x)) -> c_6(f^#(x))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(mark(x)) -> c_7(f^#(x))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(x)) -> c_7(f^#(x))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [1] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(x)) -> mark(f(f(x)))} and weakly orienting the rules {f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(x)) -> mark(f(f(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [4] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(f(x)) -> c_0(f^#(f(x)))} and weakly orienting the rules { active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(x)) -> c_0(f^#(f(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(active(x)) -> c_5(active^#(f(x)))} and weakly orienting the rules { active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(active(x)) -> c_5(active^#(f(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [7] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [7] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mat(f(x), c()) -> no(c())} and weakly orienting the rules { f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat(f(x), c()) -> no(c())} Details: Interpretation Functions: active(x1) = [1] x1 + [8] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [2] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [10] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} and weakly orienting the rules { mat(f(x), c()) -> no(c()) , f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} Details: Interpretation Functions: active(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [2] c_7(x1) = [1] x1 + [1] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {chk(no(c())) -> active(c())} and weakly orienting the rules { chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {chk(no(c())) -> active(c())} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [2] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [1] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] chk^#(x1) = [1] x1 + [3] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [3] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(no(x)) -> c_6(f^#(x))} and weakly orienting the rules { chk(no(c())) -> active(c()) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(no(x)) -> c_6(f^#(x))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [12] mat(x1, x2) = [1] x1 + [1] x2 + [12] X() = [0] y() = [0] c() = [7] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [8] chk^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [6] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mat(f(x), f(y())) -> f(mat(x, y()))} and weakly orienting the rules { f^#(no(x)) -> c_6(f^#(x)) , chk(no(c())) -> active(c()) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat(f(x), f(y())) -> f(mat(x, y()))} Details: Interpretation Functions: active(x1) = [1] x1 + [4] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [0] no(x1) = [1] x1 + [7] mat(x1, x2) = [1] x1 + [1] x2 + [6] X() = [7] y() = [5] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , f^#(no(x)) -> c_6(f^#(x)) , chk(no(c())) -> active(c()) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , f^#(no(x)) -> c_6(f^#(x)) , chk(no(c())) -> active(c()) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , f^#(active(x)) -> c_5(active^#(f(x))) , active^#(f(x)) -> c_0(f^#(f(x))) , active(f(x)) -> mark(f(f(x))) , f^#(mark(x)) -> c_7(f^#(x))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , no_0(2) -> 2 , X_0() -> 2 , y_0() -> 2 , c_0() -> 2 , active^#_0(2) -> 1 , f^#_0(2) -> 1 , chk^#_0(2) -> 1 , c_6_0(1) -> 1 , c_7_0(1) -> 1} 2) {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} The usable rules for this path are the following: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x)))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} Details: We apply the weight gap principle, strictly orienting the rules {active(f(x)) -> mark(f(f(x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(x)) -> mark(f(f(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [2] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} and weakly orienting the rules {active(f(x)) -> mark(f(f(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))} and weakly orienting the rules { chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active(f(x)) -> mark(f(f(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [3] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [2] chk(x1) = [1] x1 + [2] no(x1) = [1] x1 + [1] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [6] chk^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [1] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {chk(no(c())) -> active(c())} and weakly orienting the rules { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active(f(x)) -> mark(f(f(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {chk(no(c())) -> active(c())} Details: Interpretation Functions: active(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [0] no(x1) = [1] x1 + [12] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [10] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [2] chk^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [2] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mat(f(x), f(y())) -> f(mat(x, y()))} and weakly orienting the rules { chk(no(c())) -> active(c()) , chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active(f(x)) -> mark(f(f(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat(f(x), f(y())) -> f(mat(x, y()))} Details: Interpretation Functions: active(x1) = [1] x1 + [8] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [0] no(x1) = [1] x1 + [15] mat(x1, x2) = [1] x1 + [1] x2 + [2] X() = [0] y() = [15] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [4] chk^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [2] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active(f(x)) -> mark(f(f(x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , chk^#(no(f(x))) -> c_1(f^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , active(f(x)) -> mark(f(f(x)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(7) -> 3 , mark_0(8) -> 3 , mark_0(9) -> 3 , no_0(3) -> 5 , no_0(5) -> 5 , no_0(7) -> 5 , no_0(8) -> 5 , no_0(9) -> 5 , X_0() -> 7 , y_0() -> 8 , c_0() -> 9 , f^#_0(3) -> 13 , f^#_0(5) -> 13 , f^#_0(7) -> 13 , f^#_0(8) -> 13 , f^#_0(9) -> 13 , chk^#_0(3) -> 14 , chk^#_0(5) -> 14 , chk^#_0(7) -> 14 , chk^#_0(8) -> 14 , chk^#_0(9) -> 14} 3) {tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} The usable rules for this path are the following: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x)))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , mat(f(x), f(y())) -> f(mat(x, y())) , chk(no(c())) -> active(c()) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x))) , tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} Details: We apply the weight gap principle, strictly orienting the rules { mat(f(x), c()) -> no(c()) , active(f(x)) -> mark(f(f(x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mat(f(x), c()) -> no(c()) , active(f(x)) -> mark(f(f(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [2] X() = [0] y() = [2] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [1] x1 + [15] c_8(x1) = [1] x1 + [15] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} and weakly orienting the rules { mat(f(x), c()) -> no(c()) , active(f(x)) -> mark(f(f(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))))} Details: Interpretation Functions: active(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] chk(x1) = [1] x1 + [1] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [1] x1 + [8] c_8(x1) = [1] x1 + [6] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mat(f(x), f(y())) -> f(mat(x, y()))} and weakly orienting the rules { tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , active(f(x)) -> mark(f(f(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat(f(x), f(y())) -> f(mat(x, y()))} Details: Interpretation Functions: active(x1) = [1] x1 + [12] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [11] chk(x1) = [1] x1 + [0] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] y() = [6] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [1] x1 + [3] c_8(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , chk(no(c())) -> active(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , active(f(x)) -> mark(f(f(x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x))) , chk(no(c())) -> active(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , tp^#(mark(x)) -> c_8(tp^#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))), x)))) , mat(f(x), c()) -> no(c()) , active(f(x)) -> mark(f(f(x)))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { active_1(37) -> 25 , active_2(52) -> 39 , f_0(7) -> 36 , f_0(28) -> 27 , f_0(29) -> 28 , f_0(30) -> 29 , f_0(31) -> 30 , f_0(32) -> 31 , f_0(33) -> 32 , f_0(34) -> 33 , f_0(35) -> 34 , f_0(36) -> 35 , f_1(42) -> 41 , f_1(43) -> 42 , f_1(44) -> 43 , f_1(45) -> 44 , f_1(46) -> 45 , f_1(47) -> 46 , f_1(48) -> 47 , f_1(49) -> 48 , f_1(50) -> 49 , f_1(51) -> 50 , mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(7) -> 3 , mark_0(8) -> 3 , mark_0(9) -> 3 , chk_0(26) -> 25 , chk_1(40) -> 39 , no_0(3) -> 5 , no_0(5) -> 5 , no_0(7) -> 5 , no_0(8) -> 5 , no_0(9) -> 5 , no_0(9) -> 26 , no_1(37) -> 40 , mat_0(27, 3) -> 26 , mat_0(27, 5) -> 26 , mat_0(27, 7) -> 26 , mat_0(27, 8) -> 26 , mat_0(27, 9) -> 26 , mat_1(41, 3) -> 40 , mat_1(41, 5) -> 40 , mat_1(41, 7) -> 40 , mat_1(41, 8) -> 40 , mat_1(41, 9) -> 40 , X_0() -> 7 , X_1() -> 51 , y_0() -> 8 , c_0() -> 9 , c_1() -> 37 , c_2() -> 52 , tp^#_0(3) -> 23 , tp^#_0(5) -> 23 , tp^#_0(7) -> 23 , tp^#_0(8) -> 23 , tp^#_0(9) -> 23 , tp^#_0(25) -> 24 , tp^#_1(39) -> 38 , c_8_0(24) -> 23 , c_8_1(38) -> 23} 4) {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} The usable rules for this path are the following: { mat(f(x), f(y())) -> f(mat(x, y())) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x)))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mat(f(x), f(y())) -> f(mat(x, y())) , mat(f(x), c()) -> no(c()) , f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x)) , active(f(x)) -> mark(f(f(x))) , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} Details: We apply the weight gap principle, strictly orienting the rules {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [1] x1 + [1] mat(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [1] x1 + [1] x2 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mat(f(x), c()) -> no(c())} and weakly orienting the rules {mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat(f(x), c()) -> no(c())} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [1] x1 + [1] mat(x1, x2) = [1] x1 + [1] x2 + [9] X() = [0] y() = [8] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [1] x1 + [1] x2 + [15] c_2(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mat(f(x), f(y())) -> f(mat(x, y()))} and weakly orienting the rules { mat(f(x), c()) -> no(c()) , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat(f(x), f(y())) -> f(mat(x, y()))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [12] chk(x1) = [0] x1 + [0] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] y() = [8] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [8] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [1] x1 + [1] x2 + [11] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(x)) -> mark(f(f(x)))} and weakly orienting the rules { mat(f(x), f(y())) -> f(mat(x, y())) , mat(f(x), c()) -> no(c()) , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(x)) -> mark(f(f(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [2] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [1] x1 + [0] mat(x1, x2) = [1] x1 + [1] x2 + [4] X() = [0] y() = [0] c() = [12] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [1] x1 + [1] x2 + [5] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { active(f(x)) -> mark(f(f(x))) , mat(f(x), f(y())) -> f(mat(x, y())) , mat(f(x), c()) -> no(c()) , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(active(x)) -> active(f(x)) , f(no(x)) -> no(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { active(f(x)) -> mark(f(f(x))) , mat(f(x), f(y())) -> f(mat(x, y())) , mat(f(x), c()) -> no(c()) , mat^#(f(x), f(y())) -> c_2(f^#(mat(x, y())))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(8) -> 3 , mark_0(9) -> 3 , no_0(3) -> 5 , no_0(5) -> 5 , no_0(8) -> 5 , no_0(9) -> 5 , y_0() -> 8 , c_0() -> 9 , f^#_0(3) -> 13 , f^#_0(5) -> 13 , f^#_0(8) -> 13 , f^#_0(9) -> 13 , mat^#_0(3, 3) -> 16 , mat^#_0(3, 5) -> 16 , mat^#_0(3, 8) -> 16 , mat^#_0(3, 9) -> 16 , mat^#_0(5, 3) -> 16 , mat^#_0(5, 5) -> 16 , mat^#_0(5, 8) -> 16 , mat^#_0(5, 9) -> 16 , mat^#_0(8, 3) -> 16 , mat^#_0(8, 5) -> 16 , mat^#_0(8, 8) -> 16 , mat^#_0(8, 9) -> 16 , mat^#_0(9, 3) -> 16 , mat^#_0(9, 5) -> 16 , mat^#_0(9, 8) -> 16 , mat^#_0(9, 9) -> 16} 5) {chk^#(no(c())) -> c_3(active^#(c()))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [0] x1 + [0] mat(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {chk^#(no(c())) -> c_3(active^#(c()))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {chk^#(no(c())) -> c_3(active^#(c()))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {chk^#(no(c())) -> c_3(active^#(c()))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [1] x1 + [0] mat(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {chk^#(no(c())) -> c_3(active^#(c()))} Details: The given problem does not contain any strict rules 6) {mat^#(f(x), c()) -> c_4()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [0] x1 + [0] mat(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mat^#(f(x), c()) -> c_4()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mat^#(f(x), c()) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mat^#(f(x), c()) -> c_4()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [0] x1 + [0] chk(x1) = [0] x1 + [0] no(x1) = [0] x1 + [0] mat(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] y() = [0] c() = [0] tp(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] chk^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] mat^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] tp^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mat^#(f(x), c()) -> c_4()} Details: The given problem does not contain any strict rules